POINT-SLOPE FORM

Want some other practice with lines?
 <u>Introduction to the Slope of a Line Practice with Slope Graphing Lines</u>

<u>Finding Equations of Lines</u>

(more mathematical cats)

Suppose a line has slope m and passes through a known point (x_1, y_1) . That is, we *know the slope of the line* and we *know a point on the line*.

We can get an equation that is ideally suited to these two pieces of information.

This equation is appropriately called the *point-slope form of a line*.

Here's what to do:

- Recall that (x_1, y_1) is a known point on a line with slope m.
- Let (x, y) denote any other point on the line.
- Now, we have two points: the known point (x_1, y_1) and a 'generic' point (x, y).
- The slope of the line, computed using these two points, must equal m.
- Using the slope formula, we have:

$$m=rac{y-y_1}{x-x_1}$$

or, equivalently,

$$y-y_1=m(x-x_1)$$

This gives us an extremely useful equation of a line, as summarized below:

POINT-SLOPE FORM line with slope m, passing through (x_1, y_1)

The graph of the equation

$$y - y_1 = m(x - x_1)$$

is a line with slope m that passes through the point (x_1, y_1) . Since this equation is ideally suited to the situation where you know a **point** and a **slope**, it is appropriately called **point-slope form**.

IMPORTANT THINGS TO KNOW ABOUT POINT-SLOPE FORM:

- The *variables* in the equation $y y_1 = m(x x_1)$ are x and y. That is, this is an <u>equation in two variables</u>, x and y. Thus, its solution set is the set of all ordered pairs (x, y) that make it true.
- For a given equation:
 - \circ the number m is a constant (a specific number) that represents the slope of the line;
 - \circ the number x_1 (read as 'ex sub one') is a constant that represents the x-value of the known point;
 - the number y_1 (read as 'wye sub one') is a constant that represents the y-value of the known point
- As we vary the values of m, x_1 , and y_1 , we get lots of different equations. Here are some of them:

$$y-2=5(x-3)$$
 $(m=5, x_1=3, \text{ and } y_1=2)$ $y-\frac{1}{2}=\sqrt{2}(x-3.4)$ $(m=\sqrt{2}, x_1=3.4, \text{ and } y_1=\frac{1}{2})$ $y=5(x+1)$ Rewrite the equation as: $y-0=5(x-(-1))$ Thus, we see that: $m=5, x_1=-1, \text{ and } y_1=0$

- So, even though the equation $y-y_1=m(x-x_1)$ uses five different 'letters' (y, y_1, m, x) , and (x_1) , they play very different roles:
 - \circ x and y are the variables; they determine the nature of the solution set
 - \circ m, x_1 and y_1 are called *parameters*; they are constant in any particular equation, but vary from equation to equation.
- This is another beautiful example of the power/compactness of the mathematical language! The single equation $y y_1 = m(x x_1)$ actually describes an entire *family* of equations, which has infinitely-many members.

We get the members of this family by choosing real numbers m, x_1 and y_1 to plug in.

• If you know the slope of a line and the *y*-intercept, then it's probably easiest to use <u>slope-intercept</u> form.

But, if you know the slope of a line and a point that *isn't* the *y*-intercept, then it's easiest to use point-slope form.

• Remember—just as expressions have lots of different names, so do sentences. Every non-vertical line can be written in any of these forms:

 \circ point-slope form: $y - y_1 = m(x - x_1)$

- slope-intercept form: y = mx + b
- \circ general form: ax + by + c = 0
- Here's an example. (Make sure you convince yourself that these are <u>equivalent</u> equations!)
 - \circ point-slope form: y-2=5(x-3)
 - \circ slope-intercept form: y = 5x 13
 - \circ general form: 5x y 13 = 0

EXAMPLE:

Question:

Write the point-slope equation of the line with slope 5 that passes through the point (3, -2). Then, write the line in y = mx + b form.

Solution:

Here, (x_1, y_1) is (3, -2) and m = 5. Substitution into $y - y_1 = m(x - x_1)$ gives:

$$y - (-2) = 5(x - 3)$$

$$y$$
 minus $\frac{\text{known}}{y\text{-value}}$ equals slope (x) minus $\frac{\text{known}}{x\text{-value}}$

$$y$$
 - (-2) = 5 $(x$ - 3 $)$

$$y$$
 – y_1 = m (x – x_1

Then, put it in slope-intercept form by solving for y:

$$y - (-2) = 5(x - 3)$$
 (start with point-slope form)

$$y + 2 = 5x - 15$$
 (simplify each side)

$$y = 5x - 17$$
 (subtract 2 from both sides)